

Ø HI Operations Document – R. Harrison

(presented by Dave Neudegg – SciOps for Cluster, Mars Express, Double Star)

- Ø HI Image Simulation C. Davis & R. Harrison
- Ø HI Operations Scenarios R. Harrison & S. Matthews
- Ø HI Beacon Mode Specification S. Matthews

Ø HI in a nutshell:

First opportunity to observe Earth-directed CMEs along the Sun-Earth line in interplanetary space - the first instrument to detect CMEs in a field of view including the Earth!

First opportunity to obtain stereographic views of CMEs in interplanetary space - to investigate CME structure, evolution and propagation.

Method: Occultation and baffle system, with wide angle view of the heliosphere, achieving light rejection levels of 3x10⁻¹³ and 10⁻¹⁴ of the solar brightness.

Ø HI in a nutshell:

	HI-1	HI-2
Instrument Type	Externally-	Externally-
E12E0	Occulted	Occulted
	Coronagraph	Coronagraph
Centre of Field-of-View Direction	Along Sun-Earth	Along Sun-Earth
	Line	Line
	$\theta = 13.65 \text{ deg}$	$\theta = 53.35 \text{ deg}$
Angular Field-of-View	20 deg	70 deg
Coronal Coverage	12 - 84 R _{sun}	66 - 318 R _{sun}
Overlap With COR2	12 - 15 R _{sun}	N/A
Overlap With HI-1	N/A	66 - 84 R _{sun}
Baseline Image (2 x 2 Binning)	1024 x 1024	1024 x 1024
Image Pixel Scale (Binned)	70 arcsec	4 arcmin
Spectral Bandpass	630 - 730 nm	400 - 1000 nm
Exposure Time	12 - 20 sec	60 - 90 sec
Nominal Images Per Sequence	70	50
Required Cadence (Per Sequence)	60 min	120 min
Brightness Sensitivity	3 x 10 ⁻¹⁵ B _{sun}	3 x 10 ⁻¹⁶ B _{sun}
Straylight Rejection	3 x 10 ⁻¹³ B _{sun}	10 ⁻¹⁴ B _{sun}
Brightness Accuracy	10%	10%

Ø HI Operations Document

Ø HI Operations Document – Version 4 released Dec 1, 2003

Ø Author: Richard Harrison, HI Principal Investigator

Ø Document located at UK Web site: http://www.stereo.rl.ac.uk

Ø The HI team is not aware of any other instrument operations document on STEREO.

RAL Technical Note 7/02/2003 Heliospheric Imager: Operations Document Richard A. Harrison Space Science & Technology Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK [r.harrison@rl.ac.uk] Version 3, 7 February 2003

Ø HI Operations Document

Ø Purpose: Sets out plans for the operation of the Heliospheric Imager. It is intended that this information be used as an input to the discussion on

Ø the development of on-board and ground software (including planning tool software, archive software and data handling, inspection and analysis software),

- Ø payload operations planning,
- Ø commanding,
- Ø monitoring and data receipt,
- Ø data handling and archiving.

In short – it spells out the requirements on operation and software.

- Ø HI Operations Document contents:
 - Ø Operations planning and implementation
 - Ø HI Scientific operation
 - Ø Data monitoring and archiving
 - Ø Image processing and calibration requirements
 - Ø Instrument monitoring and maintenance
 - Ø Commissioning plan
 - Ø The beacon mode
 - Ø Software requirements
 - Ø Scientific operations sequences

Ø HI Operations Document:

Ø With regard to software and operations requirements, the HI Operations Document lists 34 requirements which must be considered by the SECCHI software team and those planning the operations facilities.

Ø These requirements range from flexibility of programming parameters such as exposure times, to the return of partial frames, from cosmic ray cleaning to the definition of the beacon mode.

Ø HI Operations Scenarios:

Ø With regard to HI Scientific Operations Sequences, we have continued the design of specific operations schemes, aimed at addressing specific scientific questions.

Ø This is used to define the operation and its flexibility and comes out of the highly successful 'Blue Book' studies of CDS/SOHO.

Ø The products are a clear understanding of how we wish to use the instrument, and clear definitions of the requirements on software and operations.

Ø 15 scenarios so far – next slide...

Study-Programme-Scenario	Author
Synoptic CME programme	R. Harrison
Beacon mode *	Matthews, Harrison, Davis
Impact of CME on Earth	R. Harrison
Understanding how observations at L1 & SECCHI are related	P. Cargill
CMEs in interplanetary space *	P. Cargill
3-D structure of interplanetary CMEs *	L. Green
CME onset *	S. Matthews
Particle acceleration at CME shocks	S. Matthews
The relationship between CMEs and magnetic clouds	S. Matthews
Boundary regions between fast & slow streams in the solar wind	A. Breen
Development of co-rotating interaction regions	A. Breen
Solar wind microstructure	A. Breen
Differential drift velocities in the fast & slow solar winds	A. Breen
Remote solar wind measurements from 3-D obs. of cometary ion tails	G. Jones
Interplanetary acceleration of ICMEs *	M. Owens

Ø HI Scientific Operations Scenarios – the Synoptic Mode:

	HI-1	HI-2
Image array	1024x1024 (2kx2k summed)	1024x1024 (2kx2k summed)
FOV	20° (3.65-23.65)	70° (18.35-88.35)
Nominal Exposure	12 s	60 s
Summed Exposures	70	60
Synoptic Cadence	1 hr	2 hr
Telemetry Rate	2.9 kbit/s	1.5 kbit/s

- Ø The Beacon Mode -
 - Ø Provided for quick data receipt, for space weather purposes
 - Ø HI is a key player in this the only instrument to see CMEs with Earth within the boundary of the FOV
 - Ø Options:
 - Ø Reduced resolution images;
 - Ø N-S strip Sunward of Earth;
 - Ø Partial images.

Ø The Beacon Mode -

Ø Current plan:

Returned image 256x256 pixel image (summed from 2048x2048

array on board)

Rate 1 image per hour, alternately HI-1 and HI-2.

Pixel depth 32 bits (defined by on board summed data)

Nominal telemetry 588 bit/sec.

Note: The beacon mode must be programmable so we can explore different approaches particularly in the early mission.

'MISSION PLANNING CONCEPT' (GSDR requirement?)

A. Payload Master Science Plan / Strategy (incl. campaigns, maneuvers etc)

[SCIENCE: Long Cycle]

Science Working Team (SWT-Science community)
Science Operations Working Group (SOWG-PI-PST)

B. Instrument Programme-Scenario-Mode [SCI-OPS: Medium Cycle]

Payload Operations Center (POC)

Science Operations Working Group (SOWG-PI-PST)

C. Command Sequences (CSEQs), Telecommands (TCs)

[OPS: Short Cycle]

Mission Operations Center (MOC)

Payload Operations Center (POC)